Capacity Calculation

Tom Tellefsen, Statnett 25.October 2018

Capacity calculation

- 1. Provide the market with as high market capacities as possible, given the constraints in the grid.
 - N-1 principle
 - No planned countertrade
- 2. Achieve a market clearance adaptable to the physical reality.
 - The exchange in the DA-result (elspot flow) should be close to the physical flow.

3. Uncertainties in the capacity calculation must be taken into account to reduce the risk of an unacceptable situation in the operational phase.

- All capacity calculations involve a degree of uncertainty.
- Uncertainty and risk will vary between the cross-zonal corridors.

Elspot bidding zones

- Norway is divided into 5 bidding zones based on "structural congestions"
- 624 capacities are given every day to the DA-market.
 - Ca 228 000 individual capacities determined in 2017.
- The bidding zones are essential in order to ensure that the planned Elspot flow is within the physical limits between the bidding zones.

Current bidding zones

- The current bidding zones in Norway (and Sweden) are functioning well.
- More bidding zones would result in:
 - Small market areas (market power)
 - The process of capacity calculation would be too complex, given todays NTC-model.
- Fewer bidding zones would result in:
 - Lower cross-zonal capacities
 - Unnecessary restrictions on a larger number of market players
 - More large bottlenecks would potentially have to be handled in the operational phase.
- operational phase.
 NTC calculations are difficult to communicate!

From physical capacity to trading capacity

- Certain adaptations must be done in order to handle physical constraints in an NTC-model (without a grid model)
- Three main groups of capacities:
 - 1. Strictly based on physical capacity, including system protection
 - 2. Based on physical capacity, but adjusted due to:
 - Max import/export capacity to one or a group of elspot areas.
 - Load, production or exchange forecast, power flow in neighboring areas and available reserves.
 - **3**. Strictly based on a prognosis of load flow

Considerations in the capacity determination process

- Which bottlenecks should be included in the capacity calculation?
 - Will a reduction in trading capacity contribute to solving the problem?
 - Can the problem be solved using other actions?
- Which cuts will be fully loaded first?
- What is the physical flow on other transmission lines in the corridor when the first cut reaches its limit?
- The availability of system protection
- Availability of reserves
- Grid configuration

NTCs cannot be set individually.

- Many NTCs are summarized to give the max exchange to the area (or sum of many areas).
- Higher capacity on one corridor, gives lower on other corridors.
- Outages in one area can couse congestions in other areas.
- Dimentioning cuts can include lines from different areas.

Risk management and efficiency

- If the capacity is set too high; is the security of supply at risk, or is it easy to handle it in operation by special regulation?
- If capacity reduction will not solve the problem, or be an inefficient measure, the capacity will not be reduced.

Grid analyzes

- Three different restriction could occur:
 - Thermal (dependent on outdoor temperature)
 - Dynamic instability
 - Voltage

Measures to increase capacity

- System protection
 - Generator tripping
 - Load shedding
 - Grid splitting (Automatic disconnection of a line or transformer when an outage occurs on another line, to avoid instability)
- Change the grid configuration to increase capacity, often at the expence of security of supply.

Capacity calculation NO4

NO4 NO4 ←→ SE1 NO4 ←→ SE2 NO4 **←→** NO3 SE1 SE2

FI

- nentioning fault
- ften Ofoten-
- sem
- ng distances
- Id lead to
- amic instability
- stem protection
- ncluded in the
- acity
- culation

• The capacities could not be set individually. The physical congestions relate to the sum of capacity on all three corridors.

• The share on each corridor is based on flow forecast.

Potential internal bottlenecks that must be handled by capacity reduction (NO5-NO1, NO2-NO1 and NO1A-NO1)

Capacity NO1-SE3

- Consist of:
 - 420 kV Hasle-Borgvik
 - 420 kV Halden-Loviseholm
 - 132 kV Eidskog-Charlottenberg
- Maximum capacity: 2145 MW (included system protection)
- Lower capacity during wintertime.
- TSO responsibility to be able to deliver spot result to neighbouring countries, despite BRP imbalances.

Consequences of not taking these congestions into account in capacity calculation

• Planned export to Sweden is not delivered in operation.

Statnett

- The export to Sweden is already sold to Poland, Lithuania, Germany and Denmark.
- Use of Swedish disturbance reserves to cover the imbalance.
- Imbalanced system:
 - Need for a lot of activation, even if the BRPs are balanced.
 - Loop flows will cause congestions on many corridors.
 - Need for more TSO reserves to handle the imbalance and the loop flows.

Example Capacity Calculation NO1-SE3

- Production forecast NO1: 2100 MW
- Import capacity (NO5-NO1+NO2-NO1): 6000 MW
- Reserves NO1:
- Concumption forecast NO1:
- TRM:

- 200 MW 7000 MW (normal winterday) 150 MW
- Capacity NO1-SE3= P + I + R C T = 1150 MW

Project to get more reserves (demand side response)!

Example

Fremtiden er elektrisk

Market result

- Common price in NO1, SE3, SE4, DK2
- The reduced capacity NO1-SE3 did not have any consequences on the prices, because of the high deficit in NO1.

Fremtiden er elektrisk

Summary

- NTCs today is based on physical congestions, but many more factors are important.
 - Production, load, assumptions on load flow
 - Outages in Norway, and outages in neighbouring countries close to the border.
 - Availability of system protection
 - Available reserves in different areas
- NTCs can not be set individually.
 - Many NTCs are summarized to give the max exchange to the area (or sum of many areas).
 - Higher capacity on one corridor, gives lower on other corridors.
- NTC calculation is complex. We look forward to flowbased

AVOIDING LOOP FLOWS

INSTEAD OF HANDLING LOOP FLOWS

Fremtiden er elektrisk

Example capacity NO5

	Capacity	Physical flow
NO5-NO3	500	~500
NO5-NO1	3500	~3500
NO5-NO2	400	~400
Max surplus NO5	4400	4400

Balanced system!

Fremtiden er elektrisk

Example capacity NO5

	Capacity	Physical flow
NO5-NO3	1500	700
NO5-NO1	3500	4500
NO5-NO2	800	600
Max surplus NO5	5800	5800

1000 MW overload NO5-NO1Need for downregulation in NO5

Example capacity NO5

Physical flow after 1400 MW downregulation NO5:

	Capacity	Physical flow
NO5-NO3	1500	500
NO5-NO1	3500	3500
NO5-NO2	800	400
Max surplus NO5	5800	4400

- Lack of 1400 MW in the rest of the system
- Phys. flows not according to planned flows in the whole Nordic region.

• Lack of 1000 MW in NO3!

